石鑫华视觉论坛

 找回密码
 注册会员
查看: 4900|回复: 2

[新闻百科] 霍夫变换

[复制链接]
  • TA的每日心情

    9 小时前
  • 签到天数: 3437 天

    连续签到: 39 天

    [LV.Master]2000FPS

    发表于 2015-3-30 10:43:14 | 显示全部楼层 |阅读模式 来自:广东省东莞市 电信

    注册登陆后可查看附件和大图,以及购买相关内容

    您需要 登录 才可以下载或查看,没有账号?注册会员

    x
    霍夫变换概述

                                   
    登录/注册后可看大图

    霍夫变换

    霍夫变换(Hough transform是图像处理中识别几何形状的一种方法,在图像处理中有着广泛应用,霍夫变换不受图形旋转的影响,易于进行几何图形的快速变换。基于霍夫变换的改进方法也有很多,其中一个重要的方法是广义霍夫变换,可以用来检测任意形状的曲线。
    最简单的霍夫变换是在图像中识别直线。在平面直角坐标系(x-y)中,一条直线可以用方程

                                   
    登录/注册后可看大图

    表示。对于直线上一个确定的点(

                                   
    登录/注册后可看大图
    ,

                                   
    登录/注册后可看大图
    ),有

                                   
    登录/注册后可看大图

    这表示参数平面(k-b)中的一条直线。因此,图像中的一个点对应参数平面中的一条正弦曲线,图像中的一条直线对应参数平面中的一个点。对图像上所有的点作霍夫变换,最终所要检测的直线对应的一定是参数平面中直线相交最多的那个点。这样就在图像中检测出了直线。在实际应用中,直线通常采用参数方程

                                   
    登录/注册后可看大图
    .
    类似的还有检测线段、圆、圆弧、椭圆、矩形等的霍夫变换。
    应用这个性质就为我们解决问题提供了方法:
    首先,我们初始化一块缓冲区,对应于参数平面,将其所有数据置为0.
    对于图像上每一前景点,求出参数平面对应的直线,把这直线上的所有点的值都累加。最后,找到参数平面上最大点的位置,这个位置就是原图像上直线的参数。上面就是霍夫变换的基本思想。就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。
    在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p---theta平面上的一条曲线上。其它的还是一样。

    在看下面一个问题:我们要从一幅图像中检测出半径已知的圆形来。这个问题比前一个还要直观。我们可以取和图像平面一样的参数平面,以图像上每一个前景点为圆心,以已知的半径在参数平面上画圆,并把结果进行累加。最后找出参数平面上的峰值点,这个位置就对应了图像上的圆心。在这个问题里,图像平面上的每一点对应到参数平面上的一个圆。
    把上面的问题改一下,假如我们不知道半径的值,而要找出图像上的圆来。这样,一个办法是把参数平面扩大称为三维空间。就是说,参数空间变为x--y--R三维,对应圆的圆心和半径。
    图像平面上的每一点就对应于参数空间中每个半径下的一个圆,这实际上是一个圆锥。最后当然还是找参数空间中的峰值点。不过,这个方法显然需要大量的内存,运行速度也会是很大问题。有什么更好的方法么?我们前面假定的图像都是黑白图像(二值图像),实际上这些2值图像多是彩色或灰度图像通过边缘提取来的。我们前面提到过,图像边缘除了位置信息,还有方向信息也很重要,这里就用上了。根据圆的性质,圆的半径一定在垂直于圆的切线的直线上,也就是说,在圆上任意一点的法线上。这样,解决上面的问题,我们仍采用2维的参数空间,对于图像上的每一前景点,加上它的方向信息,都可以确定出一条直线,圆的圆心就在这条直线上。这样一来,问题就会简单了许多。

    接下来还有许多类似的问题,如检测出椭圆,正方形,长方形,圆弧等等。这些方法大都类似,关键就是需要熟悉这些几何形状的数学性质。霍夫变换的应用是很广泛的,比如我们要做一个支票识别的任务,假设支票上肯定有一个红颜色的方形印章,我们可以通过霍夫变换来对这个印章进行快速定位,在配合其它手段进行其它处理。霍夫变换由于不受图像旋转的影响,所以很容易的可以用来进行定位。
    霍夫变换有许多改进方法,一个比较重要的概念是广义霍夫变换,它是针对所有曲线的,用处也很大。就是针对直线的霍夫变换也有很多改进算法,比如前面的方法我们没有考虑图像上的这一直线上的点是否连续的问题,这些都要随着应用的不同而有优化的方法。
    顺便说一句,搞图像处理这一行,在理论方面,有几本杂志是要看的,自然是英文杂志,中文期刊好像没有专门的图像处理期刊,当然也有不少涉及这方面的期刊,但事实求是来说,的确比英文杂志水平差很多。
    ‘IEEE Transactions on Pattern Recognition And Machine Intelligence’
    ‘IEEE Transactions on Image Processing’
    是最重要的两本,其它的如ICIP等的会议文章也非常好。
    回复

    使用道具 举报

  • TA的每日心情
    奋斗
    2024-8-9 12:52
  • 签到天数: 307 天

    连续签到: 1 天

    [LV.8]800PFS

    发表于 2015-6-4 06:38:18 | 显示全部楼层 来自:甘肃省天水市 电信
    回复 支持 反对

    使用道具 举报

  • TA的每日心情
    郁闷
    2016-10-14 10:10
  • 签到天数: 10 天

    连续签到: 1 天

    [LV.3]300FPS

    发表于 2015-9-23 16:10:43 | 显示全部楼层 来自:甘肃省 联通
    回复 支持 反对

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册会员

    本版积分规则

    LabVIEW HALCON图像处理入门教程(24.09)
    石鑫华机器视觉与LabVIEW Vision图像处理PDF+视频教程11种全套
    《LabVIEW Vision函数实例详解2020-2024》教程-NI Vision所有函数使用方法介绍,基于NI VISION2020,兼容VDM21/22/23/24

    QQ|石鑫华视觉论坛 |网站地图

    GMT+8, 2025-1-16 18:08

    Powered by Discuz! X3.4

    © 2001-2025 Discuz! Team.

    快速回复 返回顶部 返回列表